
103

Reuse of Classification Tree Models for 

Complex Software Projects

S. Alekseev · P. Tollkühn · P. Palaga 1

Nokia Siemens Networks

Z. R. Dai · A. Hoffmann · A. Rennoch · I. Schieferdecker

Fraunhofer FOKUS

Abstract

Customizable mobile services are needed to address ever changing service

requirements and shortened service development and deployment times.

However, service flexibility is a natural evil for quality assurance: the serv-

ice functionality and the overall system can no longer be guaranteed by

the developer and tester. Instead, a post-customization test phase is

needed, which is flexible enough to provide a good coverage of the cus-

tomized service features. In order to make this post-customization testing

efficient, reuse of rather general tests is proposed and outlined in this

paper.

1 Introduction

Today’s mobile services providers operate in rapidly changing markets. As a con-

sequence of this, they are forced to react quickly. Especially, they must be able to

implement new business models and billing services in a short time. The same

holds for the rearrangement of the existing services. The usual approach in such a

situation is that the service software is provided with many customizable parame-

ters and customization tools which allow quick and effective customisation.

Once released, the customizable service does not need to be recompiled any-

more and it can be adapted by several mechanisms including

1 On leave to Max-Planck-Institute, Berlin



S. Alekseev · P. Tollkühn · P. Palaga · Z. R. Dai · A. Hoffmann · A. Rennoch · I. Schieferdecker104

� Data Administration: table administration (e.g. tariffs, announcements) or

parameter modification (e.g. bonus points),

� Administration of predefined service logics: enabling/disabling of services or

for-matting of predefined parameters (e.g. country specific adjustment of

number normalization),

� Modification of service logics: enabling/disabling/reordering of logical com-

ponents (e.g. disabling of an announcement), or 

� Creation of new service logics (e.g. new/extended voice menu or tariff model).

To guarantee the smooth operation of the service, comprehensive tests of possible

configurations and modifications are needed. Sections 2 and 3 give a short over-

view of the Classification Tree Method (CTM) and its adaptation for complex

software systems. However, the customizable services exceed the scope of even

such methods. The reason is that the customizable services introduce a new

dimension of complexity which the CTM cannot handle. Namely, the reordering

of logical components makes it impossible to represent such a service as a classi-

fication tree. Thus it is impossible just to generate the test cases through the com-

binations of all possible customization instances.

Instead, each release of the customizable service is provided with one or more

typical service configurations, which are called service blueprints. The blueprint

is taken as a starting point for the customisations of a service. The solution pro-

posed in Section 4 is based on several points: 

� Blueprints are taken as a starting point for the customization of a service. 

� Blueprints are associated with test models (generated by use of CTM). 

� The blueprint tests are reused and refined along the service customization. 

The reuse and refinement of tests along blueprints is a new challenge in the area

of software engineering and can be called adaptability of tests. The goal is to

select such a subset of test scenarios, which allows for optimal coverage of cus-

tomization requirements with minimal test effort.

2 Classification Tree Method

The Classification Tree Method (CTM) is an approach for systematic design of

tests [Gro93]. It is a modification of the category-partition method defined by

Ostrand and Balcer [Ost88]. The CTM suits the black-box testing paradigm well

as only the input and output domains of the system under test are needed for the

analysis. The basic idea behind CTM is to abstract from the concrete test data

and to take only those aspects of the input/output domain into consideration

which are relevant to the test. In this way, the domain of e.g. each input parame-

ter (classification) is systematically segmented into separate subsets, called

classes. The test cases are generated by combining classes from different classifi-

cations. Thus, every test case constitutes a unique combination of classes. 



105Reuse of Classification Tree Models for Complex Software Projects

Fig. 1 Classification Tree

The relationships between classes, classifications and test cases can be visualized

in a classification tree whose leafs represent the possible values (classes) of the

parameters (classifications). The test cases can be represented in a combination

matrix below the tree. Its rows correspond to test cases and its columns are linked

to the leaf classes. The marks in appropriate cells of the matrix show the combina-

tion of the classes for a given test case. To put it more precisely, only classification

nodes that have leaves need to be considered for the test case generation.

There is a freely available tool called CTE XL for editing classification trees

based on CTM [Gro95], [Leh00] and [Weg93b]. With CTE XL, the test case

table can be built automatically.

Figure 1 shows an example of a classification tree created with CTE XL. The

name of the root node can be defined by the user and has only an informal mean-

ing. The nodes CL3 and CL4 are classifications. Their children(C5 – C10) are

equivalence classes. The test case table can be seen below the tree: every test case

selects an equivalence class per classification such as C5 and C8 for test case 1,

C5 and C9 for test case 2 and so forth. 

A further important benefit of the CTM is its ability to mirror not only the

input/output domains of the SUT, but also the functional requirements which

should be covered by the SUT [Gro94], [Weg93a]. An arbitrary node of a classi-

fication tree can be marked as covering certain requirement(s) from the require-

ment specification. Every test case inherits the requirements along its classifica-

tion tree paths. Thus for every test case, it can easily be shown which require-

ments it covers and vice versa, e.g. an overall coverage of the requirements

specification can be calculated.



S. Alekseev · P. Tollkühn · P. Palaga · Z. R. Dai · A. Hoffmann · A. Rennoch · I. Schieferdecker106

3 Classification Tree Modelling

Although the CTM is quite old, it has found only limited application in the indus-

try. The main reason for this is probably the fact that the classification trees for

common real world systems can become very big and untraceable, resulting in too

many test cases which must be reduced either manually or through sophisticated

dependency rules. [Ale07] proposes a modification of the CTM to eliminate most

of these limitations. The experience at Siemens Networks demonstrates the usabil-

ity of the modified CTM for the testing of complex software systems.

In the case of testing customized services, it is important at the beginning of

the customization to detect which requirement can be reused, which are new and

which should be modified. In the next step ,the models are adapted and refer-

ences to the new or modified requirements are added. The last step is the identifi-

cation of test cases. 

The use of classification tree models allows an exact matching of necessary

test cases. The creation of CTE trees for blueprints is a straightforward proce-

dure. To do so, the scenarios need to be mapped to classifications and classes in

the tree. Sub-trees can be used for sub-requirement specifications.

Fig. 2 Requirement model example



107Reuse of Classification Tree Models for Complex Software Projects

Figure 2 shows the CTE of an example blueprint feature. The tree has branches

which are conditions defined in the requirements specification. For each service

feature (or sub-feature) blueprint, a CTE tree is specified. The combination of

feature blueprints can be realized also by the CTE trees. To do so, multiple trees

can be merged into a bigger tree. An overall node is needed in order to connect

the sub-trees together into a big tree. Features can also be assigned (i.e. tagged) by

weight. According to the relevance of the features to be tested, priorities can be

assigned in order to show their importance for the test. Weight assignments can

be done in a CTE tree node as comments. Later on, this information is collected

while evaluating the weights and priorities of a feature which should be tested. By

means of the classification trees, the structure of the requirements specifications

(R-Spec) can be derived and understood easily by its user.

The graphical representation of a CTE tree provides good means for test data

selection. When creating test data sets in classification trees, the CTE XL editor

provides means to automatically generate and combine test data according to the

needs of the tester. Automatic test data generation and manual test data creation

are supported in the tool. Also, existing test cases can be imported into new clas-

sification trees for reuse of the old test cases. This makes test data genera-

tion/specification more efficient.

4 Reuse of Test Models

Whenever a service is to be customized and deployed, basically a typical develop-

ment process can be used. At first, the requirements specification is defined. From

the requirement specification the tests are derived, implemented and executed. To

reduce the costs of software based on customizable components, the classical

development process is adapted. It is necessary to reuse test cases from main serv-

ice releases. There are two main aspects our approach that allow: 

1. modelling of the test cases from requirements with CTM and 

2. the reuse of requirements and of associated test cases in a service customiza-

tion. 

The CTM has been chosen because it allows the identification of test cases

through customization of requirements as depicted in Figure 3.

In the following, we assume the existence of a complete set of tree models for

the blueprint and discuss their reuse. In principle, the following types of service

customization exist: 

� options for (de)activation of pre-defined features (in opposite to the blueprint

implementation),

� selection of elements from pre-defined enumeration lists (e.g. menu lan-

guage),



S. Alekseev · P. Tollkühn · P. Palaga · Z. R. Dai · A. Hoffmann · A. Rennoch · I. Schieferdecker108

� specification of value representatives (e.g. number of menu repetitions,

announcement text), formats and (in)valid representatives (e.g. phone num-

bers),

� logic changes (e.g. reordering of functional blocks).

Fig. 3 Process overview

Hence for the test customization, we have to distinct three different cases: (a)

deletion, (b) insertion, and (c) modification of tree nodes in the classification tree:

Figure 4 illustrates the reduction of a classification tree model due to the dele-

tion of a requirement. Following this modification, the number of tests is decreas-

ing and one test needs to be modified.

Fig. 4 Reduction of requirements

In principle there are two different situations if an additional project requirement

appears in a classification tree model: (a) the new requirement will be added

below the last tree branching and effects only one test case that needs to be mod-

ified, the number of tests is increasing; (b) the new requirement will be added

1 2 3 1 2

1 mod 

x

x



109Reuse of Classification Tree Models for Complex Software Projects

before the last tree branching and causes at least one new test and modifies all

tests that have been attached after the position of the new requirement that has

been introduced. Both situations are illustrated in Figures 5 and 6.

Fig. 5 Additional requirement (case a)

Fig. 6 Additional requirement (case b)

Finally modification of a classification is possible and affects all tests with subse-

quent nodes. In case of combined changes of the tree models the different rules

need to be considered, e.g. Figure 7 exposes a redefinition of a parent node ele-

ment for a classification that leads three modified tests (O1, O2, O3) and one

new test case (N1).

Fig. 7 Redefinition of the parent tree node

1 2 3

B

A

1 2 3 4

1 new 1 mod 

B

A

1 2 3

B

A

1 2 3 4

1 new2 mod

B

A

1
3

f

f

f

f

f(O2) f(O3)

2

f

f(O1)

O1

O2

O3

1
3

f

f

f

f

f(O2) f(O3)

2

f

f(O1)

N2mod

N3new

X

X

N1mod



S. Alekseev · P. Tollkühn · P. Palaga · Z. R. Dai · A. Hoffmann · A. Rennoch · I. Schieferdecker110

We are currently implementing a supporting algorithm for test customization

that uses a freeze marking approach to allow an identification of old, new and

modified test case. In the algorithm all tree elements get a “freeze” mark and the

list of test case names is stored. After customizing the model, we re-generate the

test cases in order to allow a comparison with the original tree. It is an “old” test

if all elements in test case path still have freeze-marks. If at least one element has

no freeze-mark, the test has been modified, and it is a new test if the final element

has no freeze-mark (see Figure 8).

Fig. 8 Distinction between test cases

5 Conclusion

This paper presents a new approach of test reuse and refinement for customized

services. For that, a specific use of the classification tree method is being used, in

which the requirements specification is directly reflected in the structure of the

classification tree. The resulting test model relates to the service blueprint, which

defines the service configuration under test.

This allows an easier customization of the tests in correspondence to the serv-

ice customization: changes to a blueprint translate into deletion, modification

and addition of nodes in the classification tree. 

In result, the blueprint based test reuse and refinement based on the classifi-

cation tree method preserves the advantages of test models – the explicit and

objective denotation of test cases – and adds to it the traceability in relation to

service requirements combined with a clearness in test specification and docu-

mentation. 



111Reuse of Classification Tree Models for Complex Software Projects

In further work, we have also investigated the weighting of nodes in the clas-

sification tree, so as to reflect importance, risk, etc. of service features. These

weights allow to control better the selection process for test cases. Future work

will address a further spreading of the presented methodology and a more fine-

grained analysis of test weights.

References

[Ale07] Alekseev, S. Tiede, R. and Tollkühn, P. Systematic Approach for using the Classifica-

tion Tree Method for Testing Complex Software-Systems. In Proceeding of the IASTED 

Conference on Software Engineering, Innsbruck, Austria, February 2007.

[Gro93] Grochtmann, M. und Grimm, K. Classification Trees for Partition Testing. In Software 

Testing, Verification & Reliability, pages 63 – 62, vol. 3., 1993.

[Gro94] Grochtmann, M. Test Case Design using Classification Trees. In Proceedings of the 

International Conference on Software Testing Analysis & Review (STAR), Washington 

D.C., USA, pages 95 – 102, May 1994.

[Gro95] Grochtmann, M.; Wegener, J. Graph Theory in the Control Flow Analysis of the large 

time critical Applications. In Proceedings of the 8th International Software Quality Week, 

San Francisco, USA, May 1995.

[Leh00] Lehmann, E.; Wegener, J. Test Case Design by Means of the CTE XL. In Proceedings 

of the 8th European International Conference on Software Testing, Analysis & Review, 

Copenhagen, Denmark, EuroSTAR 2000, December 2000.

[Ost88] Ostrand, T., and Balcer, M. The Category-Partition Method for Specifying and Gener-

ating Functional Tests. Communications of the ACM, pages 676–686, 1988.

[Weg93a] Wegener, J. Grochtmann, M. Werkzeugunterstützte Testfallermittlung für den funk-

tionalen Test mit dem Klassifikationsbaum-Editor CTE. In Proceedings der GIFachtagung 

Softwaretechnik 93, Dortmund, Germany, pages 95 – 102, November 1993.

[Weg93b] Wegener, J. Grochtmann, M.; Grimm. Tool-Supported Test Case Design for Black 

Box Testing by Means of the Classification- Tree Editor. In Proceedings of the 1st European 

International Conference on Software Testing Analysis & Review, London, Great Britain, 

pages 169 – 176. EuroSTAR, 1993.


